- Gerar link
- X
- Outros aplicativos
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
COM ELEMENTOS DO SISTEMA SDCTIE GRACELI, TENSOR G+ GRACELI CAMPOS E ENERGIA, E ENERGIA, E CONFIGURAÇÕES ELETRÔNICAS DOS ELEMENTOS QUÍMICO, E OUTRAS ESTRUTURAS.
ESTADO E NÚMERO QUÂNTICO, NÍVEIS DE ENERGIA DO ÁTOMO, FREQUÊNCIA. E OUTROS.
TENSOR G+ GRACELI, SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO E ESPECÍFICO NÍVEL DE ENERGIA.
SISTEMA MULTIDIMENSIONAL GRACELI
ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.
Configuração eletrônica dos elementos químicos. [parte do sistema Graceli infinito-dimensional].
As unidades de Planck ou unidades naturais são um sistema de unidades proposto pela primeira vez em 1899 por Max Planck. O sistema mede várias das magnitudes fundamentais do universo: tempo, longitude, massa, carga elétrica e temperatura. O sistema se define fazendo que estas cinco constantes físicas universais da tabela tomem o valor 1 quando se expressem equações e cálculos em tal sistema.
O uso deste sistema de unidades traz consigo várias vantagens. A primeira e mais óbvia é que simplifica muito a estrutura das equações físicas porque elimina as constantes de proporcionalidade e faz com que os resultados das equações não dependam do valor das constantes.
Por outra parte, se podem comparar muito mais facilmente as magnitudes de distintas unidades. Por exemplo, dois prótons se repelem porque a repulsão eletromagnética é muito mais forte que a atração gravitacional entre eles. Isto pode ser comprovado ao ver que os prótons têm uma carga aproximadamente igual a uma unidade natural de carga, mas sua massa é muito menor que a unidade natural de massa.
Também permite evitar bastantes problemas de arredondamento, sobretudo em computação. Entretanto, têm o inconveniente de que ao usá-las é mais difícil perceber-se os erros dimensionais. São populares na área de investigação da relatividade geral e a gravidade quântica.
As unidades de Planck podem ser chamadas (por ironia) pelos físicos como as "unidades de Deus". Isto elimina qualquer arbitrariedade antropocêntrica do sistema de unidades.
Tabela 1: Constantes físicas fundamentais
Constante | Símbolo | Dimensão |
---|---|---|
velocidade da luz no vácuo | L / T | |
Constante de gravitação | L3/T2M | |
Constante reduzida de Planck | ML2/T | |
Constante de força de Coulomb | M L3/ Q2 T2 | |
Constante de Boltzmann | M L3/T2K |
//////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Expressão de leis físicas em unidades de Planck
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- se converte em
utilizando unidades de Planck.
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- se converte em
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- A energia de uma partícula ou fóton com frequência radiante
em sua função de onda
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- se converte em
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- A famosa equação de massa-energia de Einstein
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- se converte em
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- (por exemplo, um corpo com uma massa de 5.000 unidades de Planck de massa tem uma energia intrínseca de 5.000 unidades de Planck de energia) e sua forma completa
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- se converte em
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- se converte em
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- A unidade de temperatura se define para que a media de energia térmica cinética por partícula por grau de libertade de movimento
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- se converte em
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- se converte em
.
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- se convertem respectivamente em
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- utilizando as unidades de Planck. (Os fatores
podem ser eliminados se
for normalizado, em vez da constante de força de Coulomb
.)
- utilizando as unidades de Planck. (Os fatores
Unidades de Planck básicas
Ao dar valor 1 às cinco constantes fundamentais, as unidades de tempo, comprimento, massa, carga e temperatura se definem assim:
Tabela 2: Unidades de Planck básicas
Nome | Dimensão | Expressão | Equivalência aproximada no Sistema Internacional |
---|---|---|---|
Tempo Planck | Tempo (T) | 5.39121 × 10−44 s | |
Comprimento de Planck | Comprimento (L) | 1.61624 × 10−35 m | |
Massa de Planck | Massa (M) | 2.17645 × 10−8 kg | |
Carga de Planck | Carga elétrica (Q) | 1.8755459 × 10−18 C | |
Temperatura de Planck | Temperatura (ML2T−2/k) | 1.41679 × 1032 K |
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Unidades de Planck derivadas
Como em outros sistemas de unidades, as magnitudes físicas derivadas podem ser definidas baseando-se nas Unidades de Planck.
Tabela 3: Unidades de Planck derivadas
Nome | Dimensão | Expressão | Equivalência aproximada no Sistema Internacional |
---|---|---|---|
Energia de Planck | Energia (ML2/T2) | 1.9561 × 109 J | |
Força de Planck | Força (ML/T2) | 1.21027 × 1044 N | |
Potência de Planck | Potência (ML2/T3) | 3.62831 × 1052 W | |
Densidade de Planck | Densidade (M/L3) | 5.15500 × 1096 kg/m³ | |
Frequência angular de Planck | Frequência (1/T) | 1.85487 × 1043 rad/s | |
Pressão de Planck | Pressão (M/LT2) | 4.63309 × 10113 Pa | |
Corrente elétrica de Planck | Corrente elétrica (Q/T) | 3.4789 × 1025 A | |
Tensão elétrica de Planck | Tensão elétrica (ML2/T2Q) | 1.04295 × 1027 V | |
Resistência elétrica de Planck | Resistência (ML2/T Q2) | 2.99792458 × 10¹ Ω |
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Unidades de Planck simplificam as equações principais da física
Ordinariamente, grandezas físicas que tem diferentes dimensões (tais como tempo e comprimento) não podem ser equiparadas, mesmo que sejam numericamente iguais (1 segundo não é o mesmo que 1 metro). Contudo, em física teórica este critério pode ser anulado de maneira a simplificar cálculos. O processo pelo qual isto é feito é chamado "adimensionalização". A tabela 4 mostra como unidades de Planck, pela escolha dos valores numéricos das cinco constantes fundamentais à unidade, simplificam muitas equações da física e fazem-nas adimensionais.
Tabela 4: Equações adimensionalizadas
Forma usual | Forma adimensionalizada | |
---|---|---|
Lei de Newton de Gravitação Universal | ||
Equação de Schrödinger | ||
Relação de Planck relacionando a energia de partícula à frequência angular | ||
Equação massa/energia da relatividade restrita de Einstein | ||
Equações de campo de Einstein da relatividade geral | ||
Energia térmica por partícula por grau de liberdade | ||
Lei de Coulomb | ||
Equações de Maxwell |
//////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
A análise dimensional tem sua grande utilidade na previsão, verificação e resolução de equações que relacionam as grandezas físicas garantindo sua integridade e homogeneidade. Este procedimento auxilia a minimizar a necessidade de memorização das equações. Em análise dimensional tratamos as dimensões como grandezas algébricas, isto é, apenas adicionamos ou subtraímos grandezas nas equações quando elas possuem a mesma dimensão.
Em engenharia e ciência , a análise dimensional é a análise das relações entre diferentes quantidades físicas , identificando suas quantidades básicas (como comprimento , massa , tempo e carga elétrica ) e unidades de medida (como milhas x quilômetros ou libras x . quilogramas) e rastreando essas dimensões à medida que cálculos ou comparações são realizados. A conversão de unidades de uma unidade dimensional para outra é muitas vezes mais fácil dentro da métrica ou sistema do que em outros, devido à base 10 regular em todas as unidades. A análise dimensional, ou mais especificamente o método de rótulo de fator , também conhecido como método de fator de unidade , é uma técnica amplamente usada para tais conversões usando as regras da álgebra .[1][2][3]
Os teoremas de Buckingham e de Bridgman são teoremas centrais na análise dimensional.
Analisando dimensionalmente uma equação
No Sistema Internacional de Unidades são utilizadas sete grandezas fundamentais:
- Comprimento (metro)
- Massa (quilograma)
- Tempo (segundo)
- Intensidade de corrente elétrica (Ampere)
- Temperatura termodinâmica (Kelvin)
- Intensidade luminosa (candela)
- Quantidade de matéria (mol)
Porém, em análise dimensional utilizamos apenas três grandezas massa, comprimento e tempo, as quais são representadas pelas letras M, L e T respectivamente. Podemos, a partir dessas grandezas determinar uma série de outras, por exemplo, analisando dimensionalmente a equação da velocidade no movimento uniforme (MRU) temos:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Nessa expressão, representa a velocidade,
o deslocamento e
o intervalo de tempo. Uma vez que
e
, decorre que:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Constante de estrutura fina é a constante física que caracteriza a magnitude da força eletromagnética. Pode ser definida como
.
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Nessa definição, é a carga do elétron,
a constante de Planck,
a velocidade da luz no vácuo e
a permissividade do vácuo.
A constante de estrutura fina é adimensional, ou seja, seu valor não depende do sistema de unidades de medida usado. Segundo o CODATA, a constante vale:
.
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Arnold Sommerfeld introduziu esta constante em 1916.
As Unidades Atômicas (português brasileiro) ou Unidades Atómicas (português europeu) (ua) formam um sistema de unidades conveniente para a física atômica, eletromagnetismo, mecânica e eletrodinâmica quânticas, especialmente quando nos interessamos nas propriedades dos elétrons. Há dois tipos diferentes de unidades atômicas, denominadas unidades atômicas de Hartree e unidades atômicas de Rydberg, que diferem na eleição da unidade de massa e carga. Neste artigo trataremos sobre as unidades atômicas de Hartree. Em ua, os valores numéricos das seguintes seis constantes físicas se definem como a unidade:
- Duas propriedades do elétron, a massa e carga;
- Duas propriedades do átomo de hidrogênio, o raio de Bohr e o valor absoluto da energia potential elétrica no estado fundamental;
- Duas constantes, a Constante de Planck reduzida ou constante de Dirac e a constante da Lei de Coulomb.
Índice
Unidades fundamentais
Unidades Atômicas Fundamentais | ||||
---|---|---|---|---|
Magnitude | Nome | Símbolo | Valor (unidades do SI) | Escala de Unidades de Planck |
comprimento | Raio de Bohr | 5.291 772 108(18)×10−11 m | 10−35 m | |
massa | massa em repouso do elétron | 9.109 3826(16)×10−31 kg | 10−8 kg | |
carga | carga elementar | e | 1.602 176 53(14)×10−19 C | 10−18 C |
momento angular | constante de Planck | 1.054 571 68(18)×10−34 J s | (igual) | |
energia | energia de Hartree | 4.359 744 17(75)×10−18 J | 109 J | |
constante de força eletrostática | constante de Coulomb | 8.987 742 438×109 C−2 N m2 | (igual) |
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Estas seis unidades não são independentes; para normalizá-las simultaneamente a 1, é suficiente normalizar quatro delas a 1. A normalização da energia de Hartree e da constante de Coulomb, por exemplo, são uma consequência de normalizar as outras quatro magnitudes.
Análise dimensional
Para comprovar, por exemplo, como a normalização da energia de Hartree e de Bohr são consequência de normalizar a massa e carga do elétron e as constantes de Planck e de Coulomb, podemos utilizar a análise dimensional. Assim, se consideramos as dimensões do operador energia cinética em unidades do Sistema Internacional, temos que a Hartree pode ser expressa como
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Analogamente, se consideramos as dimensões do operador energia potencial, teremos
,
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Se igualamos ambas as expressões, podemos obter a relação de Bohr com as outras quatro unidades
.
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Por último, substituindo em qualquer das expressões de
, se obtém a definição da Hartree em termos das constantes fundamentais
.
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Algumas unidades derivadas
Unidades Atómicas Derivadas | |||
---|---|---|---|
Magnitude | Expressão | Valor (unidades do SI) | Escala de Unidades de Planck |
tempo | 2.418 884 326 505(16)×10−17 s | 10−43 s | |
velocidade | 2.187 691 2633(73)×106 m s−1 | 108 m s−1 | |
força | 8.238 7225(14)×10−8 N | 1044 N | |
corrente | 6.623 617 82(57)×10−3 A | 1026 A | |
temperatura | 3.157 7464(55)×105 K | 1032 K | |
pressão | 2.942 1912(19)×1013 N m-2 | 10114 Pa |
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Comparação com as unidades de Planck
Tanto as unidades de Planck como as unidades atômicas derivam de algumas propriedades fundamentais do mundo físico, livres de considerações antropocêntricas. Para facilitar a comparação entre os dois sistemas de unidades, as tabelas anteriores mostram as ordens de magnitude, em unidades do SI, da unidade de Planck correspondente a cada unidade atômica. Geralmente, quando uma unidade atômica é "grande" em termos do SI, a coorespondente unidade de Planck é "pequena", e vice versa. Convém ter em conta que as unidades atômicas têm sido desenhadas para cálculos na escala atômica no Universo atual, enquanto que as Unidades de Planck são mais adequadas para a gravidade quântica e a cosmologia do Universo primitivo.
Tanto as "unidades atômicas" como as unidades de Planck normalizam a constante de Dirac a 1. Mais ainda, as unidades de Planck normalizam a 1 as duas constantes da relatividade geral e cosmologia: a constante gravitacional G e a velocidade da luz no vácuo, c. Se notamos por α a constante de estrutura fina, o valor de c em unidades atômicas é α−1 ≈ 137,036.
As unidades Atômicas, por outro lado, normalizam a 1 a massa e carga do elétron, e a0, o raio de Bohr do átomo de hidrogênio. Normalizar a0 a 1 implica normalizar a constante de Rydberg, R∞, a 4π/α = 4πc. Dado em unidades atômicas, o magnéton de Bohr seria μB=1/2, enquanto que o correspondente valor em unidades de Planck é e/2me. Finalmente, as unidades atômicas normalizam a 1 a unidade de energia atômica, enquanto que as unidades de Planck normalizam a 1 a constante de Boltzmann k, que relaciona energia e temperatura.
Mecânica e eletrodinâmica quânticas simplificadas
A equação de Schrödinger dependente do tempo (não-relativista) para um elétron em unidades do Sistema Internacional é
.
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
A mesma equação em unidades atômicas é
.
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Para o caso especial de um elétron em torno de um próton, o Hamiltoniano em unidades do Sistema Internacional é
,
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
enquanto que em unidades atômicas esta equação se transforma em
.
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Por último, as equações de Maxwell tomamn a seguinte forma elegante quando se expressam em unidades atômicas:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
(Realmente há uma ambiguidade nomomento de definir as unidades atômicas do campo magnético. As equações de Maxwell anteriores utilizam a convenção "Gaussiana", na que uma onda plana tem um campo elétrico e magnético de igual magnitude. Na convenção da "força de Lorentz", o fator α se inclui em B.)
A tabela a seguir fornece o significado de cada símbolo e da unidade SI de medida
Símbolo | Significado (o primeiro termo é o mais comum) | Unidade SI de medida |
---|---|---|
| Campo elétrico Também chamado de intensidade de campo elétrico | volt por metro newton por coulomb |
| Campo magnético Também chamado de indução magnética Densidade de campo magnético Densidade de fluxo magnético | tesla weber por metro quadrado, volt-segundo por metro quadrado |
| Campo de deslocamento elétrico Também chamado de indução elétrica Densidade de fluxo elétrico | coulomb por metro quadrado newton por volt-metro |
| Campo magnetizante Também chamado de campo magnético auxiliar Intensidade de campo magnético Campo magnético | ampère por metro |
| Operador divergência | "por metro" |
| Operador rotacional | |
| Derivada parcial com respeito ao tempo | "por segundo" hertz |
| Elemento vetoral diferencial da superfície "A", com magnitude infinitesimalmente pequena e direção normal à superfície "S" | metro quadrado |
| Elemento vetorial diferencial do comprimento tangencial à curva | metro |
| Permissividade do vácuo, também chamada de constante elétrica, uma constante universal | farad por metro coulomb ao quadrado por newton metro quadrado |
| Permeabilidade do vácuo, também chamada de constante magnética, uma constante universal | henry por metro newton por ampère ao quadrado |
| Densidade de carga livre (cargas ligadas) | coulomb por metro cúbico |
| Densidade de carga total (incluindo cargas livres e ligadas) | coulomb por metro cúbico |
| Densidade de corrente livre (não incluindo correntes ligadas) | ampère por metro quadrado |
| Densidade de corrente total (incluindo correntes livres e ligadas) | ampère por metro quadrado |
| Rede de cargas elétricas livres dentro de um volume tridimensionalV (não incluindo cargas ligadas) | coulomb |
| Rede de cargas elétricas ligadas a um volume tridimensionalV (incluindo cargas livres e ligadas) | coulomb |
| Integral de linha ao longo da fronteira ∂S de uma superfície S (∂S é sempre uma curva fechada - sem início nem fim). | joule por coulomb |
| Integral de linha do campo magnético sobre a fronteira fechada ∂S da superfície S | tesla-metro |
| O fluxo elétrico (integral de superfície do campo elétrico) por meio da superfície fechada | joule-metro por coulomb |
| O fluxo magnético (Integral de superfície do campo magnético) por meio da superfície fechada | tesla-metro-quadrado ou weber |
| Fluxo magnético através de qualquer superfície S, não sendo necessariamente uma superfície fechada | weber ou volt-segundo |
| Fluxo elétrico através de qualquer superfície S, não sendo necesariamente fechada | joule-metro por coulomb |
| Fluxo de campo de deslocamento elétrico através de qualquer superfície S, não sendo necessariamente fechada | coulomb |
| Rede de corrente elétrica livre passando através da superfície S (não incluindo correntes ligadas) | ampère |
| Rede de corrente elétrica passando através da superfície S (incluindo correntes livres e ligadas) | ampère |
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Formulação em unidades SI
Nome | Equações integrais | Equações diferenciais |
---|---|---|
Lei de Gauss | ||
Lei de Gauss para o magnetismo | ||
Lei da Faraday de indução | ||
Lei circular de Ampère com adição de Maxwell |
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Formulação em unidades gaussianas
As definições de carga, campo elétrico e campo magnético podem ser alteradas para simplificar o cálculo teórico, absorvendo fatores dimensionados de nas unidades de cálculo, por convenção. Com uma mudança correspondente na convenção para a lei de força de Lorentz, isto produz a mesma física, isto é, trajetórias de partículas carregadas, ou trabalho feito por um motor elétrico. Estas definições são frequentemente preferidas na física teórica e de alta energia onde é natural tomar o campo elétrico e magnético com as mesmas unidades, para simplificar a aparência do tensor eletromagnético: o objeto covariante de Lorentz unificando campo elétrico e magnético então conteria componentes com unidade e dimensão uniformes:[6] Essas definições modificadas são convencionalmente utilizadas com as unidades gaussianas (CGS). Usando essas definições e convenções, coloquialmente "em unidades gaussianas",[7] as equações de Maxwell se tornam
Nome | Equações integrais | Equações diferenciais |
---|---|---|
Lei de Gauss | ||
Lei de Gauss para o magnetismo | ||
Lei da Faraday de indução | ||
Lei circular de Ampère com adição de Maxwell |
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Note-se que as equações são particularmente legíveis quando o comprimento e o tempo são medidos em unidades compatíveis como segundos e segundos-luz, isto é, em unidades tais que c = 1 unidade de comprimento / unidade de tempo. Desde 1983, os medidores e segundos são compatíveis, exceto pelo legado histórico, pois, por definição, c = 299 792 458 m / s (≈ 1,0 pés / nanossegundo).
Mudanças cosméticas adicionais, chamadas de racionalizações, são possíveis por fatores absorventes de 4π, dependendo se queremos que a lei de Coulomb ou a lei de Gauss se saiam bem, veja unidades de Lorentz-Heaviside (usadas principalmente na física de partículas). Na física teórica, muitas vezes é útil escolher unidades tais que a constante de Planck, a carga elementar e até mesmo a constante de Newton sejam 1.
Relação entre formulações integrais e diferenciais
A equivalência das formulações integrais e diferenciais é consequência do Teorema da Divergência e do Teorema de Kelvin-Stokes.
Fluxo e divergência

De acordo com o (puramente matemático) teorema de divergência de Gauss, o fluxo elétrico através da superfície de contorno ∂Ω pode ser reescrito como:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
A versão integral da equação de Gauss pode ser reescrita como:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Como Ω é arbitrário (por exemplo, uma pequena bola arbitrária com centro arbitrário), isso é satisfeito se e somente se, o integrando for zero. Esta é a formulação de equações diferenciais da equação de Gauss até um rearranjo trivial.
Da mesma forma, reescrever o fluxo magnético na lei de Gauss para o magnetismo em forma integral dá:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
que é satisfeito por
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Sendo delΩ a superfície de contorno ∂Ω nas equações matemáticas apresentadas.
Circulação e rotacional

Pelo teorema de Stokes podemos reescrever as integrais de linha dos campos ao redor da curva de controle fechada ∂Σ para uma integral da "circulação dos campos" (ou seja, seus rotacionais) sobre uma superfície que ela delimita, ou seja,
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Assim, a lei Ampere modificada na forma integral pode ser reescrita como
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Como Σ pode ser escolhido arbitrariamente, por ex. como um disco arbitrariamente pequeno, arbitrariamente orientado, e arbitrariamente centrado, podemos concluir que o integrando é zero se e somente se, a lei modificada de Ampère na forma de equações diferenciais for satisfeita. A equivalência da lei de Faraday na forma diferencial e integral segue da mesma forma.
As integrais de linha e rotacionais são análogos às grandezas na dinâmica clássica de fluidos: a circulação de um fluido é a integral da linha do campo de velocidade de fluxo do fluido em torno de um circuito fechado, e a vorticidade do fluido é o rotacional do campo de velocidade.
Sumário de equações
As equações de Maxwell variam conforme o sistema de unidades usado. Embora a forma geral permaneça, várias definições são alteradas e diferentes constantes aparecem em diferentes lugares. As equações nesta seção são dadas no Sistema Internacional de Unidades (SI). Outras unidades comumente usadas são as unidades gaussianas, baseado no sistema CGS de unidades, as unidades de Lorentz-Heaviside, usado principalmente em física de partículas e as unidades naturais, conhecidas também como unidades de Planck, usada em física teórica.
Nas equações abaixo, símbolos em negrito representam grandezas vetoriais, e símbolos em itálico representam grandezas escalares. As definições dos termos usados abaixo são dadas logo abaixo em tabelas a parte.
Tabela das equações "microscópicas"
Nome | Forma diferencial | Forma integral |
---|---|---|
Lei de Gauss | ||
Lei de Gauss para o magnetismo | ||
Lei de Faraday da indução | ||
Lei de Ampère (com a correção de Maxwell) |
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Tabela das equações "macroscópicas"
Nome | Forma diferencial | Forma integral |
---|---|---|
Lei de Gauss | ||
Lei de Gauss para o magnetismo | ||
Lei de Faraday da indução | ||
Lei de Ampère (com a correção de Maxwell) |
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Unidades gaussianas
As equações de Maxwell são dadas normalmente no Sistema Internacional de Unidades (SI). No sistema gaussiano de unidades, as equações tomam forma mais simétrica. Os termos em negrito representam vetores:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Onde c é a velocidade da luz no vácuo. A simetria é mais aparente quando o campo eletromagnético é considerado no vácuo. As equações tomam a seguinte forma altamente simétrica:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
A força exercida por um campo elétrico e um campo magnético sobre uma partícula carregada é dada pela equação da força de Lorentz:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
onde é a carga da partícula e
é a velocidade da partícula. Note que esta é levemente diferente da expressão do SI acima. Por exemplo, aqui o campo magnético
tem as mesmas unidades do campo elétrico
.
Em materiais lineares
Em materiais lineares, os campos D e H são relacionados a E e B por:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
nos quais:
ε é a constante dieléctrica ou permissividade elétrica.
μ é a permeabilidade magnética.
Isto pode ser estendido para materiais não-lineares, fazendo ε e μ dependentes da intensidade do campo. Por exemplo, o efeito Kerr, o efeito Pockels e materiais não-isotrópicos, ε e μ passam a ser tensores que mudam a direção do campo ao qual são aplicados.
Em meios isotrópicos e não dispersivos, ε e μ são escalares independentes do tempo, e as equações de Maxwell se reduzem a
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Em um meio uniforme, homogêneo, ε e μ são constantes independentes da posição, e podem portanto ser trocadas pelas derivadas espaciais.
De modo geral, ε e μ podem ser tensores de segunda ordem, descritos por matrizes 3×3, e descrevem materiais birrefringentes ou anisotrópicos.
Embora para muitos propósitos a dependência tempo/frequência destas constantes possa ser desprezada, todo material real exibe alguma dispersão material pela qual ε e/ou μ dependem da frequência, e a causalidade vincula esta dependência às relações de Kramers-Kronig.
Vácuo
O vácuo é um meio linear, homogêneo e isotrópico, e suas constantes elétricas são designadas por ε0 e μ0, desprezando-se pequenas não-linearidades devido a efeitos quânticos. Caso não haja presença de correntes ou cargas elétricas, obtêm-se as equações de Maxwell no vácuo:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Estas equações têm uma solução simples em termos de ondas progressivas planas senoidais, com as direções dos campos elétricos e magnéticos ortogonais um ao outro e à direção do deslocamento, e com os dois campos em fase:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Mas:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
O que permite obter a equação da onda eletromagnética:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
De onde se obtém a velocidade da onda eletromagnética (c):
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Maxwell percebeu que essa quantidade "v" poderia estar relacionada à velocidade da luz no vácuo, e concluiu que a própria luz poderia ser uma forma de radiação eletromagnética, confirmada por Heinrich Hertz em 1888.
Detalhamento
Densidade de carga e campo elétrico
A forma integral equivalente (dada pelo teorema da divergência), também conhecida como lei de Gauss, é:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
pelo teorema da divergência:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
e pela Lei de Gauss:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
logo
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
onde é a área de um quadrado diferencial numa superfície fechada A com uma normal dirigida para fora definindo sua direção, e
é a carga livre abrangida pela superfície. portanto:
logo
,
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
onde é a densidade volumétrica de carga elétrica livre (SI: C/m3), não incluindo dipolos de cargas ligadas no material, e
é a densidade superficial de carga elétrica (SI: C/m2). Esta equação corresponde à lei de Coulomb para cargas estacionárias no vácuo.
Em um material linear, está diretamente relacionado ao campo elétrico
por meio de uma constante dependente do material chamada permissividade
:
.
Qualquer material pode ser tratado como linear, desde que o campo elétrico não seja extremamente intenso. A permissividade do espaço livre é referida como , e aparece em:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
onde, novamente, é o campo elétrico (SI: V/m),
é densidade de carga total, incluindo as cargas ligadas, e
(aproximadamente 8,854 pF/m) é a permissividade do vácuo.
também pode ser escrito como
, onde
é a permissividade relativa do material ou sua constante dieléctrica.
Estrutura do campo magnético
é a densidade de fluxo magnético (SI: tesla, T), também chamada a indução magnética.
A sua forma integral equivalente é:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
é a área de um quadrado diferencial
com uma normal superficial apontando para fora, definindo sua direção. Semelhantemente à forma integral do campo elétrico, esta equação funciona somente se a integral for calculada sobre uma superfície fechada.
Esta equação é relacionada à estrutura do campo magnético porque, dado o elemento de volume, a magnitude líquida dos componentes vectoriais que apontam para fora da superfície deve ser igual à magnitude dos componentes vectoriais que apontam para dentro. E, estruturalmente, isto significa que as linhas do campo magnético devem ser linhas ou trajetórias fechadas. Outra maneira de se afirmar isto é que as linhas de campo não podem se originar de outro lugar. Esta é a formulação matemática da hipótese de que não há monopolos magnéticos.
Campos magnéticos e elétricos variáveis
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Usando a forma integral equivalente e usando o teorema de Stokes, temos:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
e como pela lei de Faraday :
onde
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
logo
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
onde
ΦB é o fluxo magnético através da área A descrita pela segunda equação
E é o campo elétrico gerado pelo fluxo magnético
c é um contorno fechado na qual a corrente é induzida, tal como um fio.
S é a superfície enlaçada pela curva c.
A força eletromotriz, algumas vezes denotada como e não deve ser confundida com a permissividade acima, é igual ao valor desta integral. Esta lei corresponde à lei de Faraday de indução eletromagnética.
Esta equação relaciona os campos elétrico e magnético, mas isso também tem várias aplicações práticas. Esta equação descreve como motores elétricos e geradores elétricos trabalham. Especificamente, isto demonstra que a voltagem pode ser gerada pela variação do fluxo magnético passando através de uma dada área no tempo, tal como acontece com uma espira girando uniformemente através de um campo magnético fixado.
Em um motor ou gerador, a excitação fixa é fornecida pelo circuito de campo e a voltagem variável é medida pelo circuito da armadura. Em alguns tipos de motores/geradores, o circuito de campo é montado sobre o rotor e o circuito da armadura é montado sobre o estator, mas outros tipos de motores/geradores empregam a configuração contrária.
Fonte do campo magnético
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
onde H é a intensidade de campo magnético (SI: A/m), relacionado ao campo magnético B por uma constante chamada permeabilidade magnética μ (B = μH), e J é a densidade de corrente elétrica, definida por:, onde v é o campo vetorial chamado de velocidade de arraste que descreve as velocidades de um portador de carga que tem uma densidade descrita pela função escalar
.
Utilizando o Teorema de Stokes temos:
logo:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Complemento a Lei de Ampere, temos a contribuição de Maxwell:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Icirculada é a corrente circulada pela curva c (a corrente através de qualquer superfície é definida pela equação:
.
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
No vácuo, a permeabilidade μ é a permeabilidade do espaço vazio, μ0, que é definida como sendo exactamente 4π×10−7 W/A m. Também, a permissividade torna-se a permissividade ε0. Portanto, no vácuo, a equação torna-se:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Usando a forma integral equivalente:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
s é a aresta de uma superfície A, onde qualquer superfície com a curva s como sendo sua aresta deverá servir, e Icirculada é a corrente circulada pela curva s. A corrente através de qualquer superfície é definida pela equação: Iatravés de A =∫AJ dA. Se a densidade de fluxo elétrico não variar muito rapidamente, o segundo termo do membro direito, o fluxo de deslocamento, é desprezível, e a equação se reduz à lei de Ampère.
Equações de Maxwell na relatividade especial
Na relatividade especial, para expressar mais claramente o fato de que as equações de Maxwell no vácuo tomam a mesma forma em todos os sistemas de coordenadas inerciais, as equações de Maxwell são escritas em termos de quadrivetores e quadritensores na forma manifestamente covariante:
,
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
e
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
onde J é a quadricorrente, F é o tensor intensidade de campo ou tensor de Faraday, escrito como uma matriz 4 × 4 , e é o quadrigradiente, tal que
é o operador d'Alembertiano. O α na primeira equação é implicitamente somado de acordo com a convenção da notação de Einstein. A primeira equação tensorial expressa as duas equações inomogêneas de Maxwell: lei de Gauss e a lei de Ampère com a correção de Maxwell. A segunda equação expressa as outras duas equações homogêneas: a lei de indução de Faraday e a ausência de monopólos magnéticos.
Mais explicitamente, J = (cρ, J), um vetor contravariante, em termos da densidade de carga ρ e a densidade de corrente J. Em termos de quadripotencial, como um vetor contravariante, , onde φ é o potencial elétrico e A é o potencial vetor magnético pelo calibre de Lorentz
, F pode ser expresso como:
////////////////// SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
o que conduz a uma matriz 4 × 4 (tensor de segunda ordem):
O fato de que ambos os campos elétrico e magnético são combinados em um único tensor, que expressa que, de acordo com a relatividade, ambos os campos são diferentes aspectos da mesma coisa. E assim pela troca dos referenciais, o que parecia ser um campo elétrico em um referencial se afigura como um campo magnético em outro referencial, e vice-versa.
Note que diferentes autores algumas vezes empregam diferentes convenções de sinal para os tensores e quadrivetores, o que não afeta a interpretação física. Note também que Fαβ e Fαβ não são os mesmos: eles são as formas do tensor contravariante e covariante , relacionados pelo tensor métrico g. Na relatividade especial o tensor métrico introduz as mudanças de sinal em algumas componentes de F; dualidades métricas mais complexas são encontradas na relatividade geral.
Equações de Maxwell no vácuo
No vazio, onde não existem cargas nem correntes, podem ainda existir campos elétrico e magnético. Nesse caso, as quatro equações de Maxwell são:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
O único parâmetro nessas equações é a constante . No sistema internacional de unidades, o valor dessa constante é:
que é exatamente igual ao inverso do quadrado da velocidade da luz :
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Na época de Maxwell, meados do século XIX, a velocidade da luz já tinha sido medida com precisão dando exatamente o mesmo valor que acabamos de calcular a partir da constante de Coulomb e da constante magnética. Assim, Maxwell concluiu que a luz deveria ser uma onda eletromagnética, composta por campos elétrico e magnético que se propagam no espaço.[8]
Referências
Unidades
Sistema Internacional de Unidades para Eletromagnetismo | ||||
---|---|---|---|---|
Símbolo | Nome da grandeza | Nome da unidade | Unidade | Unidades base |
Corrente elétrica | ampère | A | A = W/V = C/s | |
Carga elétrica | coulomb | C | A·s | |
Diferença de potencial ou Potencial elétrico | volt | V | J/C = kg·m2·s−3·A−1 | |
Resistência elétrica, Impedância, Reatância | ohm | Ω | V/A = kg·m2·s−3·A−2 | |
Resistividade | ohm metro | Ω·m | kg·m3·s−3·A−2 | |
Potência elétrica | watt | W | V·A = J/s = kg·m2·s−3 | |
Capacitância | farad | F | C/V = kg−1·m−2·A2·s4 | |
lambda | carga linear ou comprimento de onda | |||
Permissividade | farad por metro | F/m | kg−1·m−3·A2·s4 | |
Susceptibilidade elétrica | Adimensional | - | - | |
Condutância, Admitância, Susceptância | siemens | S | Ω−1 = kg−1·m−2·s3·A2 | |
Condutividade | siemens por metro | S/m | kg−1·m−3·s3·A2 | |
Campo magnético,densidade de fluxo magnético, Indução magnética | tesla | T | Wb/m2 = kg·s−2·A−1 = N·A−1·m−1 | |
Fluxo magnético | weber | Wb | V·s = kg·m2·s−2·A−1 | |
Fluxo elétrico | coulomb | C | ||
Intensidade magnética | ampère por metro | A/m | A·m−1 | |
Relutância | ampère por weber | A/Wb | kg−1·m−2·s2·A2 | |
Indutância | henry | H | Wb/A = V·s/A = kg·m2·s−2·A−2 | |
Permeabilidade | henry por metro | H/m | kg·m·s−2·A−2 | |
Susceptibilidade magnética | Adimensional | |||
Susceptibilidade magnética | Adimensional | |||
função de transferência | ||||
coeficiente de temperatura | ||||
força e contra força elemotriz | ||||
Fase Inicial | ||||
velocidade angular ou frequência angular |
Outras Unidades para o Eletromagnetismo | ||||
---|---|---|---|---|
Símbolo | Unidade | Descrição | ||
ohm | (unidade SI de resistência) | |||
Fasor | ||||
rigidez dielétrica | ||||
Elétron | eletrão-volt (unidade de energia) | |||
Farad | (unidade SI de capacidade) | |||
Frequência | ||||
Gauss | (unidade de campo magnético) ou prefixo giga ( | |||
constante de Planck | ||||
constante dielétrica | ||||
indutância mútua | ||||
momento magnético | ||||
função resposta de frequência | ||||
carga elementar | ||||
Constantes de Tempo | ||||
energia potencial eletrostática | ||||
energia potencial gravítica | ||||
período de uma onda harmónica ou temperatura | ||||
Impedância | ||||
constante magnética | ||||
aumento de uma grandeza física | ||||
campo elétrico | ||||
valor máximo da função sinusoidal | ||||
pontos no espaço, curvas, superfícies e sólidos | ||||
constante de Coulomb | ||||
torque | ||||
Hertz | hertz (unidade SI de frequência) | |||
valor médio da função | ||||
transformada de Laplace da função | ||||
derivadas da função | ||||
carga volúmica ou resistividade |
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
- Gerar link
- X
- Outros aplicativos
Comentários
Postar um comentário