Pular para o conteúdo principal

 


SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

 





SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




 SISTEMA GRACELI INFINITO-DIMENSIONAL.


COM  ELEMENTOS DO SISTEMA SDCTIE GRACELI, TENSOR G+ GRACELI CAMPOS E ENERGIA, E ENERGIA, E CONFIGURAÇÕES ELETRÔNICAS DOS ELEMENTOS QUÍMICO, E OUTRAS ESTRUTURAS.

ESTADO E NÚMERO QUÂNTICO, NÍVEIS DE ENERGIA DO ÁTOMO, FREQUÊNCIA. E OUTROS.


  TENSOR G+ GRACELI, SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO  E ESPECÍFICO NÍVEL DE ENERGIA.



SISTEMA MULTIDIMENSIONAL  GRACELI

ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.


Configuração eletrônica dos elementos químicos. [parte do sistema Graceli infinito-dimensional].


DENTRO DE UMA CONCEPÇÃO QUE CADA ÁTOMO É FORMADO DE INFINITAs OUTRAS PARTÍCULAS, E COM INFINITAS OUTRAS ENERGIAS, INTERAÇÕES, TRANSFORMAÇÕES, E OUTROS FENÔMENOS, LOGO SE TEM EM CADA ÁTOMO E OU ELEMENTO QUÍMICO INFINITAS OUTRAS DIMENSÕES. COM INFINITAS VARIAÇÕES NAS CATEGORIAS DE GRACELI , QUE  SÃO: OS POTENCIAIS, TIPOS, NÍVEIS, E TEMPO DE AÇÃO ESPECÍFICO  DO FENÔMENO.

ONDE NOS SISTEMAS  DE GRACELI CATEGORIAS,  FENÔMENOS, ESTADOS, ENERGIAS, ESTRUTURAS, E OUTROS SÃO TIPOS E FORMAS DE DIMENSÕES.




Energia do fotão (português europeu) ou energia do fóton (português brasileiro) é a energia carregada por um único fóton. A quantidade de energia está diretamente relacionada à frequência e ao comprimento de onda eletromagnética do fóton. Quanto maior for a frequência do fóton, maior a sua energia. Da mesma forma, quanto maior for o comprimento de onda do fóton, menor a sua energia.

A energia do fóton é uma função somente do comprimento de onda. Outros fatores, como intensidade da radiação, não afetam a energia do fóton. Em outras palavras, dois fótons de luz com a mesma cor e, portanto, o mesmo comprimento de onda, terão a mesma energia do fóton, mesmo se um for emitido por uma vela de cera e o outro for emitido pelo Sol.

A energia do fóton pode ser representada por qualquer unidade de energia. Umas das unidades mais comuns para denotar a energia do fóton é elétron-volt (eV) e joule (bem como seus múltiplos, como microjoule). Como um joule é igual a 6,24 × 1018 eV, as unidades maiores podem ser mais úteis para denotar a energia de fótons com frequências e energias mais altas, como o raio gama, ao contrário dos fótons de menor energia, como os da região do espectro eletromagnético de radiofrequência.

Se os fótons, de fato, não possuem massa, a energia do fóton não seria relacionada à massa através da equivalência E = mc2. Os únicos dois tipos de tais partículas sem massa observados são os fótons e os glúons.[1] Entretanto, o postulado de que os fótons não possuem massa é baseado na crise que resulta de outras teorias em mecânica quântica. Para que outras teorias, como a invariância de gauge e a chamada "renormalização" sobrevivam sem considerável revisão, os fótons devem permanecer sem massa no domínio das atuais equações.[2] A alegação é contestada em outros meios.[3] Diz-se que fótons possuem massa relativística (isto é, massa resultante do movimento de um corpo material em relação a outro). Além disso, algumas hipóteses propõem que toda massa ou "massa de repouso" pode ser composta de massa relativística acumulada, secundária ao movimento, uma vez que nenhum corpo material esteja ou possa estar em "repouso" em relação a todos os campos. Nessa hipótese, assim como o movimento se torna zero, a massa também se torna zero. Por outro lado, os fótons possuem movimento e energia variável em relação à frequência e ao comprimento de onda, sugerindo que várias formas do foton têm, cada uma, equivalência de massa diferente. Assim, a equação "E = mc2" mostraria que a massa e o movimento são conceitos indissociáveis e e fundamentalmente substituíveis para toda a matéria.[4]

Fórmula

equação para a energia do fóton[5] é

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Onde E é a energia do fóton, h é a constante de Planckc é a velocidade da luz no vácuo e λ é o comprimento de onda do fóton. Como h e c são ambos constantes, a energia do fóton varia diretamente em relação ao comprimento de onda λ.

Para encontrar a energia do fóton em eV, usando o comprimento de onda em micrômetros, a equação é aproximadamente

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Portanto, a energia do fóton de comprimento de onda de 1 μm, próximo à da radiação infravermelho, é aproximadamente 1,2398 eV.

Como , onde f é a frequência, a equação da energia pode ser simplificada para

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Esta equação é conhecida como a relação de Planck-Einstein. Substituindo h por seu valor em J⋅s e f por seu valor em hertz resulta na energia do fóton em joules. Portanto, a energia do fóton à frequência de 1 Hz é 6,62606957×10−34 joules ou 4,135667516×10−15 eV.

Em química e engenharia óptica,

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




é usada onde h é a constante de Planck e a letra grega ν (ni) é a frequência do fóton.[6]




fotão (português europeu) ou fóton (português brasileiro) é a partícula elementar mediadora da força eletromagnética. O fóton também é o quantum da radiação eletromagnética (incluindo a luz). A palavra photon foi criada por Gilbert Lewis em 1926.[2] Fótons são bósons e possuem Spin igual a um. A troca de fótons (virtuais1) entre as partículas como os elétrons e os prótons é descrita pela eletrodinâmica quântica, a qual é a parte mais antiga do Modelo Padrão da física de partículas. Ele interage com os elétrons e núcleo atômico sendo responsável por muitas das propriedades da matéria, tais como a existência e estabilidades dos átomosmoléculas, e sólidos.

Em alguns aspectos um fóton atua como uma partícula, sendo que a explicação satisfatória para esse efeito foi dada em 1905, por Albert Einstein pelo Efeito fotoelétrico. Em outras ocasiões, um fóton se comporta como uma onda, tal como quando passa através de uma lente ótica. De acordo com a conhecida dualidade partícula-onda da mecânica quântica, é natural para um fóton apresentar ambos aspectos na sua natureza, de acordo com as circunstâncias que se encontra. Normalmente, a luz é formada por um grande número de fótons, tendo a sua intensidade ou brilho ligada ao número deles. Para baixas intensidades, são necessários equipamentos muito sensíveis, como os usados em astronomia, para detectar fótons individuais.

Símbolo

Um fóton é usualmente representado pelo símbolo  (gama), embora em física de altas energias este símbolo se refira a fótons de energias extremamente altas (um raio gama).

Propriedades

Os fótons são comumente associados com a luz visível, o que só é verdade para uma parte muito limitada do espectro eletromagnético. Toda a radiação eletromagnética é quantizada em fótons: isto é, a menor porção de radiação eletromagnética que pode existir é um fóton, qualquer que seja seu comprimento de ondafrequênciaenergia ou momento. Fótons são partículas fundamentais que podem ser criados e destruídos quando interagem com outras partículas, mas é conhecido que decaiam por conta própria.[carece de fontes]

Diferente da maioria das partículas, fótons não tem uma massa intrínseca detectável, ou "massa restante" (que se opõem a massa relativística). Fótons estão sempre se movendo à velocidade da luz (a qual varia de acordo com o meio no qual ela viaja) em relação a todos os observadores. A despeito da sua ausência de massa, fótons têm um momento proporcional a sua frequência (ou inversamente proporcional ao seu comprimento de onda), e seu momento pode ser transferido quando um fóton colide com a matéria (como uma bola de bilhar em movimento transfere seu momento para outra bola). Isto é conhecido como pressão de radiação a qual deve ser algum dia usada como propulsão como um veleiro solar.

Fótons são desviados por um campo gravitacional duas vezes mais que as predições da mecânica Newtoniana predisse para uma massa viajando a velocidade da luz com o mesmo momento de um fóton. Esta observação é comumente citada como uma evidência que daria suporte a relatividade geral, uma teoria da gravidade de muito sucesso publicada em 1915 por Albert Einstein. Na relatividade geral, os fótons sempre viajam a velocidade da luz em uma linha "reta", depois de se levar em conta a curvatura do espaço-tempo. (Em um espaço curvo, isto é chamado de geodésica).

Criação

Fótons são produzidos por átomos quando um elétron de valência move-se de um orbital para outro orbital com (menos ou mais) energia negativa. Fótons também podem ser emitidos por um núcleo instável quando este decai por algum tipo de decaimento nuclear. Além disto, fótons são produzidos sempre que partículas carregadas são aceleradas.

Átomos continuamente emitem fótons devido suas colisões mútuas. A distribuição do comprimento de onda destes fótons portanto está relacionada a sua temperatura absoluta (usualmente em Kelvin). A distribuição de Maxwell-Boltzmann prevê a possibilidade de um fóton possuir um determinado comprimento de onda ao ser emitido por uma coleção de átomos a uma dada temperatura. O espectro de tais fótons normalmente se encontra entre a faixa da micro-onda e do infravermelho, mas objetos aquecidos irão emitir luz visível também.

Rádiotelevisãoradar e outros tipos de transmissores usados para telecomunicação e monitoramento remoto rotineiramente criam uma extensa variedade de fótons de baixa-energia pela oscilação de campos elétricos em condutoresMagnetrons emitem fótons coerente usado em fornos micro-ondaTubos Klystron são usados quando as emissões de micro-onda devem ser mais precisamente controladas. Masers e laser criam fótons monocromáticos por emissão estimulada. Fótons mais energéticos podem ser criados por decaimento nuclearaniquilação partícula-antipartícula, e colisão de partículas de alta energia.

Spin

Os fótons tem spin 1 e são, portanto, classificados como bósons. Os fótons são os mediadores dos campos eletromagnéticos. Por isto, eles são as partículas que possibilitam que outras partículas interajam com outras partículas eletromagnéticas e com campos eletromagnéticos, por isto eles são também conhecidos como bóson de calibre. Em geral, um bóson com spin 1 deveria possuir três projeções de spin distintas (-1, 0 e 1). Contudo, a projeção zero requer um referencial aonde o fóton esteja em repouso. Devido a sua massa de repouso ser zero, tal referencial não existe, de acordo com a teoria da relatividade. Então os fótons no vácuo sempre viajam a velocidade da luz, e mostram somente duas projeções de spin, correspondendo as duas polarizações circulares opostas. Por causa de sua massa intrínseca zero, fótons são consequentemente sempre polarizados transversalmente, da mesma forma que as ondas eletromagnéticas o são, no espaço vazio.

Estado quântico

luz visível do Sol, ou de uma lâmpada, é comumente uma mistura de muitos fótons de diferentes comprimentos de onda. Uma visão deste espectro de frequência, pode ser obtida por exemplo pela passagem da luz por um prisma. Neste co-denominado "estado misto", que estas fontes tendem a produzir, a luz se constitui de fótons em equilíbrio térmico (também denominado de radiação de corpo negro). Onde eles são de muita forma, semelhantes às partículas de um gás. Por exemplo, eles exercem pressão, conhecida como pressão de radiação, na qual (em parte) origina a aparência dos cometas quando eles estão viajando próximos ao Sol.

Por outro lado, um arranjo de fótons também pode existir em estados muito mais bem organizados. Por exemplo, nos denominados estados coerentes, descreve-se uma luz coerente como as emitidas por um laser ideal. O alto grau de precisão obtido com instrumentos a laser advém desta organização.

Absorção molecular

Uma molécula típica, , possui vários níveis de energia diferentes. Quando uma molécula absorve um fóton, sua energia aumenta em uma quantidade igual à da energia do fóton. A molécula então entra em um estado excitado.

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Fótons no vácuo

No espaço vazio, conhecido como vácuo perfeito, todos os fótons se movem a velocidade da luzc, determinada como sendo igual a 299 792 458 metros por segundo, ou aproximadamente 3×108 m s−1. O metro é definido como a distância percorrida pela luz no vácuo em 1/299 792 458 de um segundo, como a velocidade da luz não oferece qualquer incerteza experimental, diferente do metro ou do segundo, tanto que confiamos no segundo sendo definido por meio de um relógio muito preciso.

Segundo um princípio da relatividade restrita de Einstein, todas as observações da velocidade da luz no vácuo são as mesmas para todas as direções e para qualquer observador em um referencial inercial. Este princípio é geralmente aceito na física desde que muitas consequências práticas para as partículas de alta-energia tem sido observadas.

Fótons na matéria

Quando fótons passam através de material, tal como num prisma, frequências diferentes são transmitidas em velocidades diferentes. Isto é chamado de refração e resulta na dispersão das cores, onde fótons de diferentes frequências saem em diferentes ângulos. Um fenômeno similar ocorre na reflexão onde superfícies podem refletir fótons de várias frequências em diferentes ângulos.

relação de dispersão associada para fótons é uma relação entre a frequênciaf, e comprimento de onda, λ. ou, equivalentemente, entre sua energiaE, e momentop. Isto é simples no vácuo, desde que a velocidade da onda, v, é dada por

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




As relações quânticas do fóton são:

 e 

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Onde h é constante de Planck. Então nós podemos escrever esta relação como:

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




que é característica de uma partícula de massa zero. Desta forma vemos como a notável constante de Planck relaciona os aspectos de onda e partícula.

Em um material, um par de fótons para a excitação do meio e comportamento diferente. Estas excitações podem ser frequentemente descritas como quase-partículas (tais como fónos e excitons); isto é, como onda quantizadas ou entidades quase-partículas propagando-se através da matéria. O "Acoplamento" significa que os fótons podem transformar nesta excitação (isto é, o fóton são absorvidos e o meio excitado, envolvendo a criação das quase-partículas) e vice-versa (as quase-partículas transformam-se de volta em um fóton, ou o meio relaxa pela re-emissão de energia na forma de fótons). Contudo , como estas transformações são as únicas possíveis, eles não estão ligados para acontecer e o que realmente propaga-se através do meio é uma polarização; isto é, uma superposição quântica-mecânica da energia quântica iniciada em um fóton e de uma excitação de uma quase partícula material.

De acordo com as regras da mecânica quântica, uma medição (aqui: na observação é que acontece a polarização) quebra a superposição; isto é, o quantum é absorvido pelo meio e permanece lá (como acontece em um meio opaco) ou re-emerge como um fóton da superfície para o espaço (como acontece em um meio transparente).

Excitações no material tem uma dispersão não-linear; isto é; seu momento não é proporcional a sua energia. Portanto, estas partículas se propagam mais devagar do que a velocidade da luz no vácuo. (A velocidade de propagação é a derivada da relação dispersão com seu respectivo momento.) Esta é a razão formal porque a luz é mais lenta em um meio (tal como o vidro) do que no vácuo. (A razão da difração pode ser deduzida disto pelo princípio de Huygens.) Outro meio de explicar isto é dizer que o fóton, por começar a se misturar com o meio excitado para forma a polarização, adquire um efeito de massa, o que significa que ele não pode viajar a c, a velocidade da luz no vácuo.

Os quanta (plural de quantum) virtuais são partículas hipotéticas trocadas entre partículas carregadas. Se são partículas verdadeiras ou não é um assunto sujeito a uma certa controvérsia. Supõe-se que efeitos como o efeito Casimir sejam provas evidentes da existência de fotões virtuais, embora essa hipótese não seja totalmente aceita.[carece de fontes]






radiação eletromagnética é uma oscilação em fase dos campos elétricos e magnéticos, que, autossustentando-se, encontram-se desacoplados das cargas elétricas que lhe deram origem. As oscilações dos campos magnéticos e elétricos são perpendiculares entre si e podem ser entendidas como a propagação de uma onda transversal, cujas oscilações são perpendiculares à direção do movimento da onda (como as ondas da superfície de uma lâmina de água), que pode se deslocar através do vácuo. Dentro do ponto de vista da Mecânica Quântica, podem ser entendidas, ainda, como o deslocamento de pequenas partículas, os fótons.

O espectro visível, ou simplesmente luz visível, é apenas uma pequena parte de todo o espectro da radiação eletromagnética possível, que vai desde as ondas de rádio aos raios gama. A existência de ondas eletromagnéticas foi prevista por James Clerk Maxwell e confirmada experimentalmente por Heinrich Hertz. A radiação eletromagnética encontra aplicações como a radiotransmissão, seu emprego no aquecimento de alimentos (fornos de micro-ondas), em lasers para corte de materiais ou mesmo na simples lâmpada incandescente.

A radiação eletromagnética pode ser classificada de acordo com a frequência da onda, em ordem crescente, nas seguintes faixas: ondas de rádiomicro-ondasradiação terahertzradiação infravermelhaluz visívelradiação ultravioletaraios X e radiação gama.

Ondas eletromagnéticas

Representação esquemática de uma onda eletromagnética linearmente polarizada produzida por um dipolo elétrico oscilante (à esquerda). A onda se propaga ao longo do eixo horizontal com comprimento de onda λ (ao centro). O campo elétrico, o campo magnético e o vetor de onda são representados, respectivamente, em azul, vermelho e preto (à direita).

As ondas eletromagnéticas primeiramente foram previstas teoricamente por James Clerk Maxwell e depois confirmadas experimentalmente por Heinrich Hertz. Maxwell notou as ondas a partir de equações de electricidade e magnetismo, revelando sua natureza e sua simetria. Faraday mostrou que um campo magnético variável no tempo gera um campo eléctrico. Maxwell mostrou que um campo eléctrico variável com o tempo gera um campo magnético, com isso há uma autossustentação entre os campos eléctrico e magnético. Em seu trabalho de 1862, Maxwell escreveu:

"A velocidade das ondas transversais em nosso meio hipotético, calculada a partir dos experimentos electromagnéticos dos Srs. Kohrausch e Weber, concorda tão exactamente com a velocidade da luz, calculada pelos experimentos óticos do Sr. Fizeau, que é difícil evitar a inferência de que a luz consiste nas ondulações transversais do mesmo meio que é a causa dos fenômenos eléctricos e magnéticos."[carece de fontes]

Ondas harmônicas

Uma onda harmônica é uma onda com a forma de uma função senoidal, como na figura, no caso de uma onda que se desloca no sentido positivo do eixo dos .

A distância  entre dois pontos consecutivos onde o campo e a sua derivada têm o mesmo valor, é designada por comprimento de onda (por exemplo, a distância entre dois máximos ou mínimos consecutivos). O valor máximo do módulo do campo, , é a sua amplitude.

Onda Harmônica

O tempo que a onda demora a percorrer um comprimento de onda designa-se por {período}, .

O inverso do período é a frequência , que indica o número de comprimentos de onda que passam por um ponto, por unidade de tempo. No sistema SI a unidade da frequência é o hertz, representado pelo símbolo Hz, equivalente a .

No caso de uma onda eletromagnética no vácuo, a velocidade de propagação é  que deverá verificar a relação:

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




A equação da função representada na figura acima é:

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




onde a constante  é a fase inicial. Essa função representa a forma da onda num instante inicial, que podemos admitir .

Para obter a função de onda num instante diferente, teremos que substituir  por , já que a onda se propaga no sentido positivo do eixo dos , com velocidade .

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




usando a relação entre a velocidade e o período, podemos escrever:

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Se substituirmos , obteremos a equação que descreve o campo elétrico na origem, em função do tempo:

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




assim, o campo na origem é uma função sinusoidal com período  e amplitude . O campo em outros pontos tem exatamente a mesma forma sinusoidal, mas com diferentes valores da fase.[1]

Propriedades

Os campos eléctrico e magnético obedecem aos princípios da superposição de ondas, de modo que seus vectores se cruzam e criam os fenômenos da refracção e da difração.[carece de fontes] Uma onda eletromagnética pode interagir com a matéria e, em particular, perturbar átomos e moléculas que as absorvem, podendo os mesmos emitir ondas em outra parte do espectro.

Como qualquer fenômeno ondulatório, as ondas eletromagnéticas podem interferir entre si. Sendo a luz uma oscilação, ela não é afetada pela estática eléctrica ou por campos magnéticos de uma outra onda eletromagnética no vácuo. Em um meio não linear, como um cristal, por exemplo, interferências podem acontecer e causar o efeito Faraday, em que a onda pode ser dividida em duas partes com velocidades diferentes.[carece de fontes]

Na refracção, uma onda, transitando de um meio para outro de densidade diferente, tem alteradas sua velocidade e sua direcção (caso esta não seja perpendicular à superfície) ao entrar no novo meio. A relação entre os índices de refracção dos dois meios determina a escala de refração medida pela lei de Snell:

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Nesta equação, i é o ângulo de incidência, N1 é o índice de refração do meio 1, r é o ângulo de refração, e N2 é o índice de refração do meio 2.

A luz se dispersa em um espectro visível porque é reflectida por um prisma, devido ao fenômeno da refração. As características das ondas eletromagnéticas demonstram as propriedades de partículas e da onda ao mesmo tempo, e se destacam mais quando a onda é mais prolongada.

Modelo de onda eletromagnética

Um importante aspecto da natureza da luz é a frequência uma onda, sua taxa de oscilação. É medida em hertz, a unidade SIU de frequência, na qual um hertz (1,00 Hz) é igual a uma oscilação por segundo. A luz normalmente tem um espectro de frequências que, somadas, juntos formam a onda resultante. Diferentes frequências formam diferentes ângulos de refração. Uma onda consiste nos sucessivos baixos e altos, e a distância entre dois pontos altos ou baixos é chamado de comprimento de onda. Ondas eletromagnéticas variam de acordo com o tamanho, de ondas de tamanhos de prédios a ondas gama pequenas menores que um núcleo atômico. A frequência é inversamente proporcional ao comprimento da onda, de acordo com a equação:

.

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Nesta equação, v é a velocidade, λ (lambda) é o comprimento de onda, e f é a frequência da onda.

Na passagem de um meio material para outro, a velocidade da onda muda, mas a frequência permanece constante. A interferência acontece quando duas ou mais ondas resultam em um novo padrão de onda. Se os campos tiverem as componentes nas mesmas direções, uma onda "coopera" com a outra (interferência construtiva); entretanto, se estiverem em posições opostas, pode haver uma interferência destrutiva.

Modelo de partículas

Um feixe luminoso é composto por pacotes discretos de energia, caracterizados por consistirem em partículas denominadas fotões (português europeu) ou fótons (português brasileiro). A frequência da onda é proporcional à magnitude da energia da partícula. Como os fótons são emitidos e absorvidos por partículas, eles actuam como transportadores de energia. A energia de um fóton é calculada pela equação de Planck-Einstein:

.

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Nesta equação, E é a energia, h é a constante de Planck, e f é a frequência.

Se um fóton for absorvido por um átomo, ele excita um electrão (português europeu) ou elétron (português brasileiro), elevando-o a um alto nível de energia. Se o nível de energia é suficiente, ele pula para outro nível maior de energia, podendo escapar da atração do núcleo e ser liberado em um processo conhecido como fotoionização. Um elétron que descer ao nível de energia menor emite um fóton de luz igual a diferença de energia. Como os níveis de energia em um átomo são discretos, cada elemento tem suas próprias características de emissão e absorção.[carece de fontes]





espectro (português brasileiro) ou espetro (português europeu) eletromagnético é o intervalo completo de todas as possíveis frequências da radiação eletromagnética. O espectro eletromagnético se estende desde as ondas de baixa frequência, ondas de rádio, até as de maior frequência como as da radiação gama.

Descoberta

Durante muito tempo, a luz era a única parte conhecida do espectro eletromagnético. Os gregos antigos tinham a noção de que a luz viajava a forma de linhas retas, chegando a estudar algumas de suas propriedades, que fazem parte do que atualmente denominamos óptica geométrica. Foi somente nos séculos XVI e XVII que o estudo da luz passou a gerar teorias conflitantes quanto a sua natureza.

A primeira descoberta de ondas eletromagnéticas além da luz ocorreu em 1800, quando William Herschel descobriu a radiação infravermelha.[1] Em seu experimento, Herschel direcionou a luz solar através de um prisma, decompondo-a, e então mediu a temperatura de cada cor. Ele descobriu que a temperatura aumentava do violeta para o vermelho, e que a temperatura mais alta se encontrava logo após o vermelho, numa região em que nenhuma luz solar era visível.

No ano seguinte, Johann Wilhelm Ritter realizou estudos na outra ponta do espectro visível e percebeu a existência do que ele chamou de "raios químicos" (raios de luz invisíveis que provocavam reações químicas), que se comportavam de forma semelhante aos raios de luz violeta visíveis, mas que estavam além deles no espectro. O termo "raios químicos" foi posteriormente renomeado radiação ultravioleta.

radiação eletromagnética foi pela primeira vez relacionada com o eletromagnetismo em 1845, quando Michael Faraday percebeu que a direção de polarização da luz que passava por um material transparente respondia a um campo magnético. Esse fenômeno foi mais tarde denominado Efeito Faraday. Durante a década de 1860, James Maxwell mostrou que, a partir das equações de Maxwell, era possível encontrar uma equação de onda para descrever a propagação do campo elétrico e outra para o campo magnético. Analisando a velocidade dessas ondas do ponto de vista teórico, Maxwell descobriu que elas deviam viajar à velocidade da luz, o que o levou a inferir que a própria luz deveria ser uma onda eletromagnética.

As equações também previam um número infinito de frequências para as ondas eletromagnéticas, todas elas viajando à velocidade da luz. Esse foi o primeiro indício da existência que um espectro eletromagnético completo.

A previsão de ondas de Maxwell previa também ondas de frequências muito baixas, quando comparadas ao infravermelho. Na tentativa de provar as equações de Maxwell e detectar essas radiações de baixa frequência, em 1886 o físico Heinrich Hertz construiu um aparelho para gerar e detectar o que hoje chamamos de ondas de rádio. Hertz encontrou as ondas e foi capaz de inferir, medindo seu comprimento e frequência, que elas viajavam à velocidade da luz. Hertz também demonstrou que a nova radiação poderia ser refletida e refratada, da mesma forma que a luz.

Em 1895 Wilhelm Röntgen percebeu um novo tipo de radiação emitida durante um experimento com um tubo com vácuo sujeito à alta voltagem. Ele chamou essa radiação de raios-X e descobriu que eles eram capazes de atravessar partes do corpo humano mas eram refletidos ou parados por materiais densos, como os ossos, e passaram a ser amplamente usados na medicina.

A última porção do espectro eletromagnético foi completado com a descoberta dos raios gama. Em 1900 Paul Villard estava estudando as emissões radiativas do radium quando ele identificou um novo tipo de radiação que ele primeiramente pensou se tratar de partículas semelhantes às conhecidas partículas alfa e beta, mas com a propriedade de serem bem mais penetrantes que ambas.

Entretanto, em 1910 o físico William Henry Bragg demonstrou que os raios gama eram uma radiação eletromagnética, e não partícula, e em 1914, Ernest Rutherford (que havia nomeado a radiação de raios gamas em 1903 quando percebeu que eles eram fundamentalmente diferentes de partículas alfa e beta) e Edward Andrade mediram seus comprimentos de onda e descobriram que os raios gama eram semelhantes ao raio-x, porém com comprimentos menor e maior frequência.

Espectro Eletromagnético

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





Extensão

Ondas eletromagnéticas são normalmente descritas por qualquer uma das seguintes propriedades físicas: frequência (ƒ), comprimento de onda (λ), ou por energia de fóton (E). O comprimento de onda é inversamente proporcional a frequência da onda, a qual representa o números de períodos existentes na unidade de tempo.[2] Desta forma, raios gama tem comprimentos do tamanho de frações do tamanho de um átomo, enquanto o comprimento de ondas no extremo oposto do espectro podem ser tão grandes quanto o universo. A energia de um fóton é diretamente proporcional à frequência de onda, portanto os raios gama possuem a maior energia, enquanto ondas de rádio possuem energias extremamente baixas.

Essas relações são ilustradas pelas seguintes equações:

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Onde:

Numa onda harmônica o comprimento de onda, , e a frequência, , não podem variar independentemente, mas estão relacionadas por .

Dada a frequência ou o comprimento de onda, é possível classificar a onda dentro do {espetro eletromagnético} e determinar as suas propriedades. O valor máximo dos campos determina a intensidade mas não a classificação no espetro.[3]

Em princípio, podem existir ondas eletromagnéticas com qualquer valor de  entre 0 e .

Alguns exemplos de ondas eletromagnéticas são as ondas de rádio e de comunicações móveis, as ondas usadas num forno de micro-ondas para aquecer os alimentos, e a própria luz. O que distingue uma dessas ondas da outra é a sua frequência, ou de forma equivalente, o seu comprimento de onda. A Figura acima mostra o espetro eletromagnético identificando algumas das ondas comuns.

Usualmente, a radiação eletromagnética produzida por um sistema não tem uma frequência única , como no caso das ondas harmônicas, mas é uma sobreposição de ondas harmônicas com uma distribuição de frequências particular. Por exemplo, a luz solar tem um espetro contínuo de frequências na banda visível, que pode ser separado por meio de um prisma.

Dentro de um meio diferente do vácuo, a constante de Coulomb  na equação da velocidade da luz deverá ser dividida pela constante dielétrica  do meio.

Isso conduz a uma velocidade da luz menor; por outro lado, no vidro a constante dielétrica diminui com o aumento da frequência e o índice de refração é inversamente proporcional à velocidade da luz. Assim o desvio da luz quando passa por um prisma de vidro é maior para a luz com maior frequência (violeta) e menor para as diferentes cores. A luz branca é separada nas diferentes frequências na passagem pelo prisma.[3]

Uma carga em repouso cria à sua volta um campo que se estende até ao infinito. Se esta carga for acelerada haverá uma variação do campo eléctrico no tempo, que irá induzir um campo magnético também variável no tempo (estes dois campos são perpendiculares entre si). Estes campos em conjunto constituem uma onda electromagnética (a direcção de propagação da onda é perpendicular às direcções de vibração dos campos que a constituem). Uma onda electromagnética propaga-se mesmo no vácuo.

Maxwell concluiu que a luz visível é constituída por ondas electromagnéticas, em tudo análogas às restantes, com a única diferença na frequência e comprimento de onda.

De acordo com a frequência e comprimento de onda das ondas eletromagnéticas pode-se definir um espectro com várias zonas (podendo haver alguma sobreposição entre elas).

Interações

As interações eletromagnéticas interagem com a matéria de diferentes formas ao longo do espectro. Os tipos de interações podem ser tão diferentes que se pode referir a elas como diferentes tipos de radiações. Ao mesmo tempo há uma continuidade entre as diferentes radiações. Por este motivo, dividimos o espectro baseado em suas diferentes interações com a matéria.

Região do EspectroPrincipais Interações com a Matéria
RadioOscilações coletivas de partículas (oscilação plasma). Um exemplo seria a oscilação de elétrons em uma antena.
MicroondasOscilação plasma, rotação molecular
InfravermelhoVibração molecular, oscilação plasma (apenas em metais)
VisívelExcitação de elétron molecular, oscilação plasma (apenas em metais)
UltravioletaExcitação molecular e de elétrons de valência, incluindo ejeções de elétrons (efeito fotoelétrico)
Raio-xExcitação e ejeção de elétrons, Efeito Compton (para números atômicos baixos)
Raios gamaEjeção energética de elétrons do átomo, Efeito Compton (para todos os números atômicos), excitação do átomo do núcleo, incluindo dissociação do núcleo
Raios gama de alta energiaCriação de pares de partícula-antipartícula. Um único fóton de alta energia pode criar várias partículas de alta energia e antipartículas através da interação com a matéria

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.










Um gás de Bose ideal é uma versão quântica de um gás ideal clássico. Ele é composto de bósons, partículas que têm um valor inteiro de spin, e portanto obedecem a estatística de Bose-Einstein. A mecânica estatística de bósons foi desenvolvida por Satyendra Nath Bose para fótons, e estendida posteriormente por Albert Einstein para partículas massivas. Einstein percebeu que um gás ideal de bósons iria se condensar quando a temperatura fosse baixa o suficiente, o que não ocorre com um gás ideal clássico. Esta fase da matéria ficou conhecida como Condensado de Bose-Einstein.

Potencial termodinâmico

Devido a Interação de troca, a maneira mais simples de trabalhar com gases quânticos é com o ensemble grande canônico:

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




que para um gás fica:

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




A segunda soma é restrita ao número total de partículas ser . Uma maneira de fazer tal soma é somar primeiro sobre todos os  possíveis e depois multiplicar todos os níveis. Para um sistema de bósons, qualquer valor de  é permitido, logo:

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




O potencial termodinâmico é então:

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Se o gás possuir apenas graus de liberdade translacionais em  dimensões (os demais casos podem ser tratados de forma análoga):

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




onde  é a função gama é a função polilogarítmica e  é o volume d-dimensional que o gás ocupa.

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Note que a função polilogarítmica só está definida para  reais menores ou iguais a 1. O segundo termo que já estava presente na expressão anterior é a contribuição de momento zero, ou seja, do estado de menor energia.

Comentários